Post-processing#

This chapter is an introduction or a reminder on the types of post-processing available in TrioCFD/TRUST (section 1.1) as well as the various variables accessible (section 1.2) for correctly visualizing the TrioCFD multiphase calculations.

Types of post-processing#

Regarding the case under study and the variables of interest, TRUST offers a range of options for post-processing:

  • Individual points of interest (’Point’ keyword),

  • Distributed points along a linear path ( ‘Segment’ keyword),

  • Points arranged according to a predefined layout (’Plan’ keyword),

  • Points arranged within a parallelepiped structure (’Volume’ keyword),

  • Fields across the entire domain. The ‘Fields’ keyword demands specifying the field’s location on the mesh (faces, elements, or vertices), the field’s name, the post-processing time, and a backup file,

  • Statistical measurement can be applied to fields to compute the mean value, standard deviation, or correlation between two fields.The ‘Statistics’ keyword requires defining a time window, time step, and the desired statistical methods.

Variables easily accessible#

In order to ease computation post-processing, some variables are already accessible with keywords. They are summarized in the following tables.

Mass keywords#

Name

Notation

Keyword

Unit

Density

\(\rho\)

masse_volumique

\(kg.m^{-3}\)

Void fraction

\(\alpha\)

Alpha

dimensionless

Mass balance on each cell

\(\nabla \cdot u\)

Divergence_U

\(m^3.s^{-1}\)

Momentum equation keywords#

Name

Notation

Keyword

Unit

Velocity

\(u\)

Vitesse or Velocity

\(m.s^{-1}\)

Velocity residual

\(u_{res}\)

Vitesse_residu

\(m.s^{-2}\)

Kinetic energy per elements

\(\frac{1}{2}\rho u^2\)

Energie_cinetique_elem

\(kg.m^{-1}.s^{-2}\)

Total kinetic energy

\(\frac{1}{2}\rho u^2\)

Energie_cinetique_totale

\(kg.m^{-1}.s^{-2}\)

Vorticity

\(w=rotu\)

Vorticite

\(s^{-1}\)

Pressure in incompressible flow

\(\frac{P}{\rho}+ gz\)

Pression

\(Pa.m^3.kg^{-1}\)

Pressure in incompressible flow

\(P+\rho\) gz

Pression_pa or Pressure

\(Pa\)

Pressure in compressible flow

\(P\)

Pression

\(Pa\)

Hydrostatic pressure

\(\rho gz\)

Pression_hydrostatique

\(Pa\)

Total pressure

\(P_{tot}\)

Pression_tot

\(Pa\)

Pressure gradient

\(\nabla (\frac{P}{\rho}+ gz)\)

Gradient_pression

\(m.s^{-2}\)

Velocity gradient

\(\nabla u\)

gradient_vitesse

\(s^{-1}\)

Local shear strain rate

\(\sqrt{2S_{ij}S_{Sij}}\)

Taux_cisaillement

\(s^{-1}\)

Viscous force

Viscous_force

\(kg.m^2.s^{-1}\)

Pressure force

Pressure_force

\(kg.m^2.s^{-1}\)

Total force

Total_force

\(kg.m^2.s^{-1}\)

Viscous force along X

Viscous_force_x

\(kg.m^2.s^{-1}\)

Viscous force along Y

Viscous_force_y

\(kg.m^2.s^{-1}\)

Viscous force along Z

Viscous_force_z

\(kg.m^2.s^{-1}\)

Pressure force along X

Pressure_force_x

\(kg.m^2.s^{-1}\)

Pressure force along Y

Pressure_force_y

\(kg.m^2.s^{-1}\)

Pressure force along Z

Pressure_force_z

\(kg.m^2.s^{-1}\)

Total force along X

Total_force_x

\(kg.m^2.s^{-1}\)

Total force along Y

Total_force_y

\(kg.m^2.s^{-1}\)

Total force along Z

Total_force_z

\(kg.m^2.s^{-1}\)

Component velocity along X

\(u_X\)

VitesseX

\(m.s^{-1}\)

Component velocity along Y

\(u_Y\)

VitesseY

\(m.s^{-1}\)

Component velocity along Z

\(u_Z\)

VitesseZ

\(m.s^{-1}\)

Source term in non Galinean referential

\(a\)

Acceleration_terme_source

\(m.s^{-2}\)

Energy equation keywords#

Name

Notation

Keyword

Unit

Temperature

\(T\)

Temperature

\(K\)

Temperature residual

\(T_{res}\)

Temperature_residu

\(K.s^{-1}\)

Temperature variance

\(Var(T)\)

Variance_Temperature

\(K^{2}\)

Temperature dissipation rate

Taux_Dissipation_Temperature

\(K^2.s^{-1}\)

Temperature gradient

\(\nabla T\)

Gradient_temperature

\(K.m^{-1}\)

Heat exchange coefficient

\(h\)

H_echange_Tref

\(W.m^{-2}.K^{-1}\)

Internal energy

\(U\)

energie_interne

\(J\)

Enthalpy

\(H\)

enthalpie

\(J\)

Irradiancy

\(I\)

Irradiance

\(W.m^{-2}\)

Volumic thermal power

\(P_w\)

Puissance_volumique

\(W.m^{-3}\)

Turbulence equations keywords#

Name

Notation

Keyword

Unit

Turbulent viscosity

\(\nu_t\)

Viscosite_turbulente

\(m^2.s^{-1}\)

Turbulent dynamic viscosity

\(\mu_t\)

Viscosite_dynamique_turbulente

\(kg.m.s^{-1}\)

Turbulent kinetic energy

\(\rho k\)

Energy

\(kg.m^2.s^{-2}\)

Turbulent dissipation rate

\(\varepsilon\)

Eps

\(m^2.s^{-3}\)

Specific dissipation rate

\(\omega\)

omega

\(s^{-1}\)

Specific dissipation time scale

\(\tau\)

tau

\(s\)

Q-criteria

\(Q\)

Critere_Q

\(s^{-1}\)

Distance to the wall

\(y^+\)

Y_plus

Friction velocity

\(u^*\)

U_star

\(m.s^{-1}\)

Turbulent heat flux

Flux_Chaleur_Turbulente

\(m.K.s^{-1}\)

Two-phase models keywords#

Name

Notation

Keyword

Unit

Drag force

\(F_D\)

Drag

\(N.m^{-3}\)

Lift force

\(F_L\)

Lift

\(N.m^{-3}\)

Dispersion force

\(F_{Disp}\)

Disp

\(N.m^{-3}\)

Lubrication force

\(F_{Lub}\)

Lub

\(N.m^{-3}\)

Bubble diameter

\(d_b\)

d_bulles

\(m\)

Let’s notice that physical properties (conductivity, diffusivity, etc) can also be post-processed. Furthermore, the Definitionchamps keyword can be used to create new or more complex fields for advanced post-processing.