Physical Models#
This section will describe the various physical models available to use in TrioCFD.
- Turbulence modeling
- Multiphase CFD
- Multiphase turbulence RANS modeling
- Fluid proprieties
- Fluid proprieties from external software
- Interfacial forces models
- The Drag force
- Constant drag coefficient
- Composant drag coefficient
- Ishii-Zuber : viscous regime
- Ishii-Zuber : viscous regime and particle regime
- Tomiyama : contaminated drag coefficient
- Bubble critical diameter (incoming)
- Wallis: annular flow
- Sonnenburg: drift flux ?
- Garnier: bubble swarm correction
- Rusche: swarm correction
- Simonnet: bubble swarm correction
- Zenit: bubble swarm correction
- The Lift force
- The Added mass force
- The Dispersion force
- The Wall force
- The Tchen force
- The Drag force
- Dispersed phase size modeling
- Thermal modeling
- Other types of models
- Homogeneous Mixture model
- Homogeneous evanescence for mixture modeling
- Dedicated mixture modeling
- Drift velocity
- Constant
- Ishii-Hibiki : Bubbly flow
- Spelt Biesheuvel
- Forces
- Two-phase frictional multiplier
- Homogeneous
- Fridel: horizontal and vertical smooth tubes with \(\mu_l/\mu_g<1000\)
- Lottes and Flinn: sodium two-phase pressure drop
- Muller-Steinhagen: air–water, water-hydrocarbons and refrigerants in pipes
- Post-processing
- Best practices for multiphase RANS modeling
References
M. Abkar, H. J. Bae, and P. Moin. Minimum-dissipation scalar transport model for large-eddy simulation of turbulent flows. Physical Review Fluids, 1(4):041701, 2016.
Elise Alméras. Etude des propriétés de transport et de mélange dans les écoulements à bulles. phdthesis, Université de Toulouse, 12 2014. URL: https://oatao.univ-toulouse.fr/13925/.
P.-E. Angeli and N. Leterrier. Implémentation et validation du modèle de turbulence k-epsilon réalisable dans TrioCFD. Technical Report DEN/DANS/DM2S/STMF/LMSF/NT/2018-64015/A, CEA, 2019.
S.P. Antal, R.T. Lahey, and J.E. Flaherty. Analysis of phase distribution in fully developed laminar bubbly two-phase flow. International Journal of Multiphase Flow, 17(5):635–652, 1991. URL: https://www.sciencedirect.com/science/article/pii/0301932291900293, doi:10.1016/0301-9322(91)90029-3.
A. Majid Bahari and Kourosh Hejazi. Investigation of buoyant parameters of $k$-ε turbulence model in gravity stratified flows. International Journal of Physical and Mathematical Sciences, 3(7):494–501, 2009. URL: https://publications.waset.org/vol/31.
J. Bardina, J. Ferziger, and W. C. Reynolds. Improved subgrid-scale models for large-eddy simulation. In 13th Fluid and PlasmaDynamics Conference, 1357. 1980.
A. Biesheuvel and L. Van Wijngaarden. Two-phase flow equations for a dilute dispersion of gas bubbles in liquid. Journal of Fluid Mechanics, 148:301–318, 1984. doi:10.1017/S0022112084002366.
A. D. Burns, T. Frank, I. Hamill, and J.-M. Shi. The favre averaged drag model for turbulent dispersion in eulerian multi-phase flows. In 5th International Conference on Multiphase Flow. 2004.
Tchen Chan-Mou. Mean Value and Correlation Problems connected with the Motion of Small Particles suspended in a turbulent fluid. Springer - Science + Business Media, 1947.
Sherman C. P. Cheung, G. H. Yeoh, and J. Y. Tu. Population balance modeling of bubbly flows considering the hydrodynamics and thermomechanical processes. AIChE Journal, 54(7):1689–1710, 2008. URL: https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.11503, doi:10.1002/aic.11503.
Kuei-Yuan Chien. Predictions of channel and boundary-layer flows with a low-reynolds-number turbulence model. AIAA Journal, 20(1):33–38, 1982. URL: https://doi.org/10.2514/3.51043, doi:10.2514/3.51043.
Marco Colombo, Roland Rzehak, Michael Fairweather, Yixiang Liao, and Dirk Lucas. Benchmarking of computational fluid dynamic models for bubbly flows. Nuclear Engineering and Design, 375:111075, 4 2021. URL: https://doi.org/10.1016/j.nucengdes.2021.111075, doi:10.1016/j.nucengdes.2021.111075.
A. K. Das and P. K. Das. Modelling bubbly flow and its transitions in vertical annuli using population balance technique. International Journal of Heat and Fluid Flow, 31(1):101–114, 2010. URL: https://doi.org/10.1016/j.ijheatfluidflow.2009.11.006, doi:10.1016/j.ijheatfluidflow.2009.11.006.
Akshay J Dave. Interfacial Area Transport Equation Models and Validation against High Resolution Experimental Data for Small and Large Diameter Vertical Pipes by. PhD thesis, University of Michigan, 2016.
M. Lopez de Bertodano, R.T. Lahey, and O.C. Jones. Phase distribution in bubbly two-phase flow in vertical ducts. International Journal of Multiphase Flow, 20(5):805–818, 1994. URL: https://www.sciencedirect.com/science/article/pii/0301932294900957, doi:10.1016/0301-9322(94)90095-7.
Martin A Lopez de Bertodano. Two fluid model for two-phase turbulent jets. Nuclear Engineering and Design, 179(1):65–74, 1998. URL: https://www.sciencedirect.com/science/article/pii/S0029549397002446, doi:10.1016/S0029-5493(97)00244-6.
J. W. Deardorff. A numerical study of three-dimensional turbulent channel flow at large reynolds numbers. Journal of Fluid Mechanics, 41(2):453–480, 1970.
A. du Cluzeau. Modélisation physique de la dynamique des écoulements à bulles par remontée d'échelle à partir de simulations fines. phdthesis, Université de Perpignan Via Domitia, 10 2019.
D. Dupuy, A. Toutant, and F. Bataille. Study of the sub-grid terms of the large-eddy simulation of a low Mach strongly anisothermal channel flow. In Eurotherm Seminar 106, Paris, France. 2016.
D. Dupuy, A. Toutant, and F. Bataille. Étude de l'équation d'énergie pour le développement de modèles sous-mailles adaptés aux écoulements fortement anisothermes. In Congrès SFT, Marseille, France. 2017.
D. Dupuy, A. Toutant, and F. Bataille. Study of the large-eddy simulation subgrid terms of a low mach number anisothermal channel flow. International Journal of Thermal Sciences, 135:221–234, 2018.
Sixin Fan, Budugur Lakshminarayana, and Mark Barnett. Low-reynolds-number k-epsilon model for unsteady turbulent boundary-layer flows. AIAA Journal, 31(10):1777–1784, 1993. URL: https://doi.org/10.2514/3.11849, doi:10.2514/3.11849.
Foad Faraji, Christiano Santim, Perk Lin Chong, and Faik Hamad. Two-phase flow pressure drop modelling in horizontal pipes with different diameters. Nuclear Engineering and Design, 395:111863, 2022. URL: https://www.sciencedirect.com/science/article/pii/S0029549322002175, doi:10.1016/j.nucengdes.2022.111863.
Lutz Friedel. Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow. In European two-phase group meeting, Ispra, Italy. 1979.
X. Y. Fu and M. Ishii. Two-group interfacial area transport in vertical air-water flow i. mechanistic model. Nuclear Engineering and Design, 219:143–168, 2002.
C Garnier, M Lance, and J.L Marié. Measurement of local flow characteristics in buoyancy-driven bubbly flow at high void fraction. Experimental Thermal and Fluid Science, 26(6):811–815, 2002. URL: https://www.sciencedirect.com/science/article/pii/S089417770200198X, doi:10.1016/S0894-1777(02)00198-X.
M. Germano, U. Piomelli, P. Moin, and W. H. Cabot. A dynamic subgrid-scale eddy viscosity model. Physics of Fluids A: Fluid Dynamics, 3(7):1760–1765, 1991.
N. S. Ghaisas and S. H. Frankel. A priori evaluation of large eddy simulation subgrid-scale scalar flux models in isotropic passive-scalar and anisotropic buoyancy-driven homogeneous turbulence. J. Turbulence, 15(2):88–121, 2014.
N. S. Ghaisas and S. H. Frankel. Dynamic gradient models for the sub-grid scale stress tensor and scalar flux vector in large eddy simulation. Journal of Turbulence, 17(1):30–50, 2016.
Takashi Hibiki and Mamoru Ishii. Distribution parameter and drift velocity of drift-flux model in bubbly flow. International Journal of Heat and Mass Transfer, 45(4):707–721, 2002.
Mamoru Ishii. One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes. Technical Report, Argonne National Lab., Ill.(USA), 1977.
Mamoru Ishii and Novak Zuber. Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AIChE Journal, 25(5):843–855, 1979. URL: https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.690250513, arXiv:https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.690250513, doi:10.1002/aic.690250513.
W.P Jones and B.E Launder. The prediction of laminarization with a two-equation model of turbulence. International Journal of Heat and Mass Transfer, 15(2):301–314, 1972. URL: http://www.sciencedirect.com/science/article/pii/0017931072900762, doi:10.1016/0017-9310(72)90076-2.
Isao Kataoka, Kenji Yoshida, Masanori Naitoh, Hidetoshi Okada, and Tadashi Morii. Modeling of turbulent transport term of interfacial area concentration in gas liquid two-phase flow. Nuclear Engineering and Design, 253:322–330, 12 2012. doi:10.1016/j.nucengdes.2011.08.062.
H. Kobayashi. The subgrid-scale models based on coherent structures for rotating homogeneous turbulence and turbulent channel flow. Physics of Fluids, 17(4):045104, 2005.
G. Kocamustafaogullari, W. D. Huang, and J. Razi. Measurement and modeling of average void fraction, bubble size and interfacial area. Nuclear Engineering and Design, 148(2-3):437–453, 1994. doi:10.1016/0029-5493(94)90124-4.
G. Kocamustafaogullari and M. Ishii. Foundation of the interfacial area transport equation and its closure relations. Int. J. Heat Mass Transfer 38, pages 481–493, 1994. doi:10.1016/0017-9310(94)00183-v.
J.C. Kok. Resolving the dependence on free-stream values for the k-omega turbulence model. Technical Report NLR-TP-99295, National Aerospace Laboratory NLR, 1999.
Ravikishore Kommajosyula. Development and assessment of a physics-based model forsubcooled flow boiling with application to CFD. PhD thesis, MIT, 2020.
Eckhard Krepper and Roland Rzehak. Cfd for subcooled flow boiling: simulation of debora experiments. Nuclear Engineering and Design, 241(9):3851–3866, 2011. Seventh European Commission conference on Euratom research and training in reactor systems (Fission Safety 2009). URL: https://www.sciencedirect.com/science/article/pii/S0029549311005401, doi:10.1016/j.nucengdes.2011.07.003.
J.T. Kuo and G.B. Wallis. Flow of bubbles through nozzles. International Journal of Multiphase Flow, 14(5):547–564, 1988. URL: https://www.sciencedirect.com/science/article/pii/0301932288900572, doi:10.1016/0301-9322(88)90057-2.
N Kurul. On the modeling of multidimensional effects in boiling channels. ANS. Proc. National Heat Transfer Con. Minneapolis, Minnesota, USA, 1991, 1991.
C.K.G. Lam and K. Bremhorst. A Modified Form of the $k$-ε Model for Predicting Wall Turbulence. Journal of Fluids Engineering, 103(3):456–460, 09 1981. URL: https://doi.org/10.1115/1.3240815, doi:10.1115/1.3240815.
B.E. Launder and B.I. Sharma. Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer, 1(2):131–137, 1974. URL: http://www.sciencedirect.com/science/article/pii/0094454874901507, doi:10.1016/0094-4548(74)90150-7.
B.E. Launder and D.B. Spalding. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2):269–289, 1974. URL: http://www.sciencedirect.com/science/article/pii/0045782574900292, doi:10.1016/0045-7825(74)90029-2.
A. Leonard. Energy cascade in large eddy simulations of turbulent fluid flows. Advances in Geophysics, 18A:237–248, 1974.
Yixiang Liao, Dirk Lucas, Eckhard Krepper, and Martin Schmidtke. Development of a generalized coalescence and breakup closure for the inhomogeneous musig model. Nuclear Engineering and Design, 241(4):1024–1033, 2011. URL: https://doi.org/10.1016/j.nucengdes.2010.04.025, doi:10.1016/j.nucengdes.2010.04.025.
D. K. Lilly. A proposed modification of the germano subgrid-scale closure method. Physics of Fluids A: Fluid Dynamics, 4(3):633–635, 1992.
PA Lottes and WS Flinn. A method of analysis of natural circulation boiling systems. Nuclear Science and Engineering, 1(6):461–476, 1956.
Nazar Lubchenko, Ben Magolan, Rosie Sugrue, and Emilio Baglietto. A more fundamental wall lubrication force from turbulent dispersion regularization for multiphase cfd applications. International Journal of Multiphase Flow, 98:36–44, 1 2018. doi:10.1016/j.ijmultiphaseflow.2017.09.003.
O. Marfaing, M. Guingo, J. Laviéville, G. Bois, N. Méchitoua, N. Mérigoux, and S. Mimouni. An analytical relation for the void fraction distribution in a fully developed bubbly flow in a vertical pipe. Chemical Engineering Science, 152:579–585, 2016. URL: https://www.sciencedirect.com/science/article/pii/S0009250916303372, doi:10.1016/j.ces.2016.06.041.
F. R. Menter, M. Kuntz, and R. Langtry. Ten years of industrial experience with the sst turbulence model. In Turbulence, Heat and Mass Transfer 4. 2003.
Florian R. Menter. Zonal two equation k-cl, turbulence models for aerodynamic flows. In American Institute of Aeronautics and Astronautics 24th Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics, 1993. AlAA 93-2906.
R.C. Morgans, B.B. Dally, G.J. Nathan, P.V. Lanspeary, and D.F. Fletcher. Application of the revised wilcox (1998) $k$-ω turbulence model to a jet in co-flow. In Second International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia, 6-8 December. 1999.
H Müller-Steinhagen and K Heck. A simple friction pressure drop correlation for two-phase flow in pipes. Chemical Engineering and Processing: Process Intensification, 20(6):297–308, 1986. URL: https://www.sciencedirect.com/science/article/pii/0255270186800083, doi:10.1016/0255-2701(86)80008-3.
F. Nicoud and F. Ducros. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbulence and Combustion, 62(3):183–200, Sep 1999. URL: https://doi.org/10.1023/A:1009995426001, doi:10.1023/A:1009995426001.
F. Nicoud, H. Baya Toda, O. Cabrit, S. Bose, and J. Lee. Using singular values to build a subgrid-scale model for large eddy simulations. Physics of Fluids, 23(8):085106, 2011.
S. Paolucci. Filtering of sound from the Navier-Stokes equations. NASA STI/Recon Technical Report N, 1982.
Miltiadis Papalexandris. On the applicability of stokes' hypothesis to low-mach-number flows. Continuum Mechanics and Thermodynamics, 05 2019. doi:10.1007/s00161-019-00785-z.
N. Park, S. Lee, J. Lee, and H. Choi. A dynamic subgrid-scale eddy viscosity model with a global model coefficient. Physics of Fluids, 18(12):125109, 2006.
Somboon Rassame and Takashi Hibiki. Modeling of turbulent diffusion terms for one-dimensional interfacial area transport equation in vertical round channels. Progress in Nuclear Energy, 157:104568, 3 2023. doi:10.1016/j.pnucene.2023.104568.
Frédéric Risso. Agitation, mixing, and transfers induced by bubbles. Annual Review of Fluid Mechanics, 50(1):25–48, 1 2018. URL: https://doi.org/10.1146/annurev-fluid-122316-045003, doi:10.1146/annurev-fluid-122316-045003.
W. Rozema, H.J. Bae, P. Moin, and R. Verstappen. Minimum-dissipation models for large-eddy simulation. Physics of Fluids, 27(8):085107, 2015.
Henrik Rusche and Raad Issa. The effect of voidage on the drag force on particles in dispersed two-phase flow. Japanese European Two-Phase Flow Meeting, 12 2000.
S. Ryu and G. Iaccarino. A subgrid-scale eddy-viscosity model based on the volumetric strain-stretching. Physics of Fluids, 26(6):065107, 2014.
Roland Rzehak and Eckhard Krepper. Closure models for turbulent bubbly flows: a cfd study. Nuclear Engineering and Design, 265:701–711, 12 2013. URL: http://dx.doi.org/10.1016/j.nucengdes.2013.09.003, doi:10.1016/j.nucengdes.2013.09.003.
Roland Rzehak and Eckhard Krepper. CFD modeling of bubble-induced turbulence. International Journal of Multiphase Flow, 55:138–155, 2013. URL: https://www.sciencedirect.com/science/article/pii/S0301932213000633 (visited on 2024-02-23), doi:10.1016/j.ijmultiphaseflow.2013.04.007.
Roland Rzehak and Sebastian Kriebitzsch. Multiphase CFD-simulation of bubbly pipe flow: a code comparison. International Journal of Multiphase Flow, 68:135–152, 1 2015. URL: https://doi.org/10.1016/j.ijmultiphaseflow.2014.09.005, doi:10.1016/j.ijmultiphaseflow.2014.09.005.
Y. Sato, M. Sadatomi, and K. Sekoguchi. Momentum and heat transfer in two-phase bubble flow—i. theory. International Journal of Multiphase Flow, 7(2):167–177, 4 1981. URL: https://doi.org/10.1016/0301-9322(81)90003-3, doi:10.1016/0301-9322(81)90003-3.
Roland Schiestel. Modeling and Simulation of Turbulent Flows. Wiley, 1 2008. ISBN 9780470610848. URL: https://doi.org/10.1002/9780470610848, doi:10.1002/9780470610848.
J.P. Schlegel, T. Hibiki, and M. Ishii. Two-group modeling of interfacial area transport in large diameter channels. Nuclear Engineering and Design 293, pages 75–86, 2015. doi:10.1016/j.nucengdes.2015.07.011.
Tsan-Hsing Shih, William W. Liou, Aamir Shabbir, Zhigang Yang, and Jiang Zhu. A new $k$-ε eddy viscosity model for high reynolds number turbulent flows. Computers & Fluids, 24(3):227–238, 1995. doi:10.1016/0045-7930(94)00032-T.
M. Simonnet, C. Gentric, E. Olmos, and N. Midoux. Experimental determination of the drag coefficient in a swarm of bubbles. Chemical Engineering Science, 62(3):858–866, 2007. URL: https://www.sciencedirect.com/science/article/pii/S0009250906006622, doi:10.1016/j.ces.2006.10.012.
J. Smagorinsky. General circulation experiments with the primitive equations: i. the basic experiment. Monthly weather review, 91(3):99–164, 1963.
T.R. Smith, J.P. Schlegel, T. Hibiki, and M. Ishii. Mechanistic modeling of interfacial area transport in large diameter pipes. International Journal of Multiphase Flow, 47:1–16, 2012. doi:10.1016/j.ijmultiphaseflow.2012.06.009.
P.D.M. Spelt and A. Biesheuvel. Dispersion of gas bubbles in large-scale homogeneous isotropic turbulence. Applied Scientific Research, 58(1):463–482, 1997. doi:10.1023/A:1000820810732.
L. B. Streher, M. H. Silvis, P. Cifani, and R. W. C. P. Verstappen. Mixed modeling for large-eddy simulation: The single-layer and two-layer minimum-dissipation-Bardina models. AIP Advances, 11(1):015002, 2021.
Rosemary Sugrue. A Robust Momentum Closure Approach for Multiphase Computational Fluid Dynamics Applications. PhD thesis, MIT, 2017.
X. Sun, S. Kim, M. Ishii, and S.G. Beus. Modeling of bubble coalescence and disintegration in confined upward two-phase flow. Nuclear Engineering and Design, 230(1):3–26, 2004. 11th International Conference on Nuclear Energy. doi:10.1016/j.nucengdes.2003.10.008.
William Sutherland. The viscosity of gases and molecular force. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 36(223):507–531, 1893.
Akio Tomiyama, Isao Kataoka, Iztok Zun, and Tadashi Sakaguchi. Drag coefficients of single bubbles under normal and micro gravity conditions. JSME International Journal Series B Fluids and Thermal Engineering, 1998.
Akio Tomiyama, Hidesada Tamai, Iztok Zun, and Shigeo Hosokawa. Transverse migration of single bubbles in simple and shear flows. Chemical Engineering Science, 57:1849–1858, 2002.
F. X. Trias, A. Gorobets, M. H. Silvis, R. W. C. P Verstappen, and A. Oliva. A new subgrid characteristic length for turbulence simulations on anisotropic grids. Physics of Fluids, 29(11):115109, 2017.
A. W. Vreman. An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Physics of fluids, 16(10):3670–3681, 2004.
G. B. Wallis. Annular two-phase flow-part 1: a simple theory. Journal of Basic Engineering, 92(1):59–72, 3 1970. URL: https://doi.org/10.1115/1.3424950, arXiv:https://asmedigitalcollection.asme.org/fluidsengineering/article-pdf/92/1/59/5621709/59\_1.pdf, doi:10.1115/1.3424950.
Tiefeng Wang, Jinfu Wang, and Yong Jin. Theoretical prediction of flow regime transition in bubble columns by the population balance model. Chemical Engineering Science, 60(22):6199–6209, 2005. doi:10.1016/j.ces.2005.04.027.
M. Weickert, G. Teike, O. Schmidt, and M. Sommerfeld. Investigation of the LES WALE turbulence model within the lattice boltzmann framework. Computers & Mathematics with Applications, 59(7):2200–2214, 2010. Mesoscopic Methods in Engineering and Science. URL: http://www.sciencedirect.com/science/article/pii/S089812210900652X, doi:10.1016/j.camwa.2009.08.060.
Wei Yao and Christophe Morel. Volumetric interfacial area prediction in upward bubbly two-phase flow. International Journal of Heat and Mass Transfer, 47(2):307–328, 2004. URL: https://www.sciencedirect.com/science/article/pii/S0017931003004320, doi:10.1016/j.ijheatmasstransfer.2003.06.004.
A. Yoshizawa. Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling. Physics of Fluids, 29(7):2152–2164, 1986.
R. Zenit, D.L. Koch, and A.S Sangani. Measurements of the average proprieties of a suspension of bubbles rising in a vertical channel. Journal of Fluid Mechanics, 429:307–342, 2001. doi:10.1017/S0022112000002743.
Pei Zhou, Shiyang Hua, Cai Gao, Dongfang Sun, and Ronghua Huang. A mechanistic model for wall heat flux partitioning based on bubble dynamics during subcooled flow boiling. International Journal of Heat and Mass Transfer, 174:121–295, 2021. URL: https://www.sciencedirect.com/science/article/pii/S0017931021003987, doi:10.1016/j.ijheatmasstransfer.2021.121295.
N. Zuber. On the dispersed two-phase flow in the laminar flow regime. Chemical Engineering Science, 19(11):897–917, 1964. URL: https://www.sciencedirect.com/science/article/pii/0009250964850673, doi:10.1016/0009-2509(64)85067-3.